Assistant Professor in Genetics, Department of Molecular Biology, Massachusetts General Hospital
Our lab studies the somatosensory circuits that mediate our sense of touch and sensations from the gastrointestinal system. We seek to understand how sensory input, beginning with peripheral sensory neurons, regulates brain development and influences perception as well as complex cognitive and social behaviors. A central tenet of our work is that variations in sensory sensitivity and experience between individuals, in particular due to genetic differences, contribute to the heterogeneity of individuals’ cognitive and social behaviors.
We found that genetic mutations or alterations in peripheral sensory neuron function contribute to multiple symptoms observed in autism spectrum disorders (ASD). Our research program combines genetics, anatomy, in vivo and in vitro electrophysiology, imaging, and behavior in mice as well as studies of human-derived neurons.
A major research direction is to study the basic biology of peripheral sensory neurons that innervate the skin and internal organs, including the gastrointestinal (GI) tract.
We also study the dysfunction of somatosensory circuits, and how this may contribute to different diseases and disorders. We hope to understand whether tactile over-reactivity and GI dysfunction in ASD may be causally linked to abnormalities in peripheral sensory neurons, to ascertain mechanisms and potential treatments for these symptoms.
Lastly, we aim build better bridges between pre-clinical models and patient physiology using patient-derived iPSC studies. We iterate between mouse models and patient-derived cells to identify cellular mechanisms for peripheral sensory neuron dysfunction in ASD. Through collaboration, we are developing therapeutic tests in patients and identifying new biomarkers for tactile hypersensitivity.